Abstract

Stratabound deposits within late Carboniferous carbonate units in the Middle–Lower Yangtze River metallogenic belt are important copper producers in China. Hitherto, the genesis of these deposits has been debated, due to poor constraints regarding the timing and source of the mineralization. Proposed models include a late Carboniferous seafloor exhalative formation (SEDEX), or an Early Cretaceous magmatic-hydrothermal origin. These models imply different metal sources (basinal vs. magmatic fluid, respectively) and would require different exploration strategies. New pyrite Re-Os and trace-element results from the representative Xinqiao Cu-S-Fe-Au deposit favor a Cretaceous (ca. 138 Ma) magmatic-hydrothermal genesis over a SEDEX origin. The distinct initial 187Os/188Os compositions (Osi) of different pyrite types (colloform Osi = 1.35 and euhedral grains Osi = 0.79), coupled with the pyrite trace-element abundance, indicate that the Os, and by inference other metals (e.g., Cu, Ag, Au), was sourced from a Cretaceous magmatic-hydrothermal system (Osi = 0.74) and Late Permian metalliferous black shales (Osi = 7.56 ± 3.76). In addition, the genesis of Au-bearing stockwork pyrite veins hosted by the Carboniferous sandstone is best explained by the leaching of existing mineralization (e.g., porphyry Au-Mo) by Early Cretaceous magmatic-hydrothermal fluids. This is implied by the lack of common Os, high Re abundances (0.1–3.7 ppm), and highly variable Re-Os model ages (379 and 173 Ma), which are positively correlated with Re and total abundances of Co, Ni, Ag, Au, Tl, and Ba. This study highlights the importance of recycling of multisourced metals (sedimentary and existing mineralization) in the formation of intrusion-related stratabound deposits. Furthermore, it demonstrates the importance of integrating information regarding the source and timing of mineralization within a well-defined geological framework, which can yield information about the ore-forming processes and help to guide mineral exploration.

Highlights

  • Intrusion-related stratabound deposits are an important end member of porphyry copper systems that contribute significantly to the world’s supply of copper (Cu), gold (Au), and other metals (Sillitoe, 2010)

  • A temporal link exists between the Early Cretaceous magmatic-skarn system associated with the Jitou Stock and the stratabound mineralization

  • This is inconsistent with a Carboniferous SEDEX origin (Xu and Zhou, 2001; Zeng et al, 2002; Xie et al, 2014)

Read more

Summary

Introduction

Intrusion-related stratabound deposits are an important end member of porphyry copper systems that contribute significantly to the world’s supply of copper (Cu), gold (Au), and other metals (Sillitoe, 2010). A unique feature of these stratabound deposits is the ubiquitous presence of colloform pyrite (Gu et al, 2007), and their close spatial association with Early Cretaceous magmatic-porphyry-skarn systems (Fig. 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call