Abstract

To address the threat posed by unknown signal sources within Mobile Crowd Sensing (MCS) systems to system stability and to realize effective localization of unknown sources in long-distance scenarios, this paper proposes a unilateral branch ratio decision algorithm (UBRD). This approach addresses the inadequacies of traditional sparse localization algorithms in long-distance positioning by introducing a time–frequency domain composite block sparse localization model. Given the complexity of localizing unknown sources, a unilateral branch ratio decision scheme is devised. This scheme derives decision thresholds through the statistical characteristics of branch residual ratios, enabling adaptive control over iterative processes and facilitating multisource localization under conditions of remote blind sparsity. Simulation results indicate that the proposed model and algorithm, compared to classic sparse localization schemes, are more suitable for long-distance localization scenarios, demonstrating robust performance in complex situations like blind sparsity, thereby offering broader scenario adaptability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.