Abstract

In unsupervised domain adaptation (UDA), a classifier for a target domain is trained with labeled source data and unlabeled target data. Existing UDA methods assume that the source data come from the same source domain (i.e., single-source scenario) or from multiple source domains, whose feature spaces have the same dimension ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">homogeneous</i> ) but different distributions (i.e., multihomogeneous-source scenario). However, in the real world, for a specific target domain, we probably have multiple different-dimension ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">heterogeneous</i> ) source domains, which do not satisfy the assumption of existing UDA methods. To remove this assumption and move forward to a realistic UDA problem, this article presents a shared-fuzzy-equivalence-relation neural network (SFERNN) for addressing the multisource heterogeneous UDA problem. The SFERNN is a five-layer neural network containing <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$c$</tex-math></inline-formula> source branches and one target branch. The network structure of the SFERNN is first confirmed by a novel fuzzy relation called multisource shared fuzzy equivalence relation. Then, we optimize parameters of the SFERNN via minimizing cross-entropy loss on <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$c$</tex-math></inline-formula> source branches and the distributional discrepancy between each source branch and the target branch. Experiments distributed across eight real-world datasets are conducted to validate the SFERNN. This testing regime demonstrates that the SFERNN outperforms the existing single-source heterogeneous UDA methods, especially when the target domain contains few data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.