Abstract
In this article, the direction of arrival (DOA) estimation of multiple speech sources in reverberant environments is investigated based on the recording of a soundfield microphone. First, the recordings are analyzed in the time-frequency (T-F) domain to detect both “points” (single T-F points) and “regions” (multiple, adjacent T-F points) corresponding to a single source with low reverberation (known as low-reverberant-single-source (LRSS) points). Then, a LRSS point detection algorithm is proposed based on a joint dominance measure and instantaneous single-source point (SSP) identification. Following this, initial DOA estimates obtained for the detected LRSS points are analyzed using a Gaussian Mixture Model (GMM) derived by the Expectation-Maximization (EM) algorithm to cluster components into sources or outliers using a rule-based method. Finally, the DOA of each actual source is obtained from the estimated source components. Experiments on both simulated data and data recorded in an actual acoustic chamber demonstrate that the proposed algorithm exhibits improved performance for the DOA estimation in reverberant environments when compared to several existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.