Abstract
The Skyrme model can be generalised to a situation where static fields are maps from one Riemannian manifold to another. Here we study a Skyrme model where physical space is two-dimensional euclidean space and the target space is the two-sphere with its standard metric. The model has topological soliton solutions which are exponentially localised. We describe a superposition procedure for solitons in our model and derive an expression for the interaction potential of two solitons which only involves the solitons' asymptotic fields. If the solitons have topological degree 1 or 2 there are simple formulae for their interaction potentials which we use to prove the existence of solitons of higher degree. We explicitly compute the fields and energy distributions for solitons of degrees between one and six and discuss their geometrical shapes and binding energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.