Abstract

A laser transillumination tomographic system, consisting of electrical, optical, mechanical, and software components, to obtain multislice images of tissue-equivalent breast phantoms and biological tissues, is developed. The tissue-equivalent phantoms are prepared from paraffin wax mixed with wax color pigments by matching their surface backscattered profiles as measured by multiprobe laser reflectometer, with that of respective tissues. The optical parameters of these phantoms are determined by matching their reflectance profiles with that as obtained by Monte Carlo simulation of optical scattering. For multislice tomographic analysis conical breast phantoms of height 80.0 mm and 80.0 mm base diameter with inclusions of different optical properties and dimensions are developed. The resolution of the inclusions in the tomograms depends on their sizes and optical parameters. The minimum size of the inclusion as detected by this procedure in a slice of diameter 50.0 mm is 3.0 mm. The structural variation as observed in the tomograms of phantoms of combination of biological tissues indicates its possible applications in detecting the abnormalities developing in human healthy soft tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call