Abstract

On-board magnetic resonance imaging (MRI) greatly enhances real-time target tracking capability during radiotherapy treatments. However, multislice and volumetric MRI techniques are frame rate limited and introduce unacceptable latency between the target moving out of position and the beam being turned off. We present a technique to estimate continuous volumetric tissue motion using motion models built from a repeated acquisition of a stack of MR slices. Applications including multislice target visualization and out-of-slice motion estimation during MRI-guided radiotherapy are demonstrated. Eight healthy volunteer studies were performed using a 0.35T MRI-guided radiotherapy system. Images were acquired at three frames per second in an interleaved fashion across ten adjacent sagittal slice positions covering 4.5cm using a balanced steady-state-free precession sequence. A previously published five-dimensional (5D) linear motion model used for MRI-guided radiotherapy gating was extended to include multiple slices. This model utilizes an external respiratory bellows signal recorded during imaging to simultaneously estimate motion across all imaged slices. For comparison to an image-based approach, the manifold learning technique local linear embedding (LLE) was used to derive a respiratory surrogate for motion modeling. Manifolds for every slice were aligned during LLE in a group-wise fashion, enabling motion estimation outside the current imaged slice using a motion model, a process which we denote as mSGA. Additionally, a method is developed to evaluate out-of-slice motion estimates. The multislice motion model was evaluated in a single slice with each newly acquired image using a leave-one-out approach. Model-generated gating decision accuracy and beam-on positive predictive value (PPV) are reported along with the median and 95th percentile distance between model and ground truth target centroids. The average model gating decision accuracy and PPV across all volunteer studies was 93.7% and 92.8% using the 5D model, and 96.8% and 96.1% using the mSGA model, respectively. The median and 95th percentile distance between model and ground truth target centroids was 0.91 and 2.90mm, respectively, using the 5D model and 0.58 and 1.49mm using the mSGA model, averaged over all eight subjects. The mSGA motion model provided a statistically significant improvement across all evaluation metrics compared to the external surrogate-based 5D model. The proposed techniques for out-of-slice target motion estimation demonstrated accuracy likely sufficient for clinical use. Results indicate the mSGA model may provide higher accuracy, however, the external surrogate-based model allows for unbiased invivo accuracy evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.