Abstract

To develop a multislice, first-pass perfusion imaging sequence for increasing the effective dynamic range of the contrast-enhanced blood signal and the contrast-to-noise ratio (CNR) of myocardial wall enhancement. A hybrid echo-planar imaging (EPI) pulse sequence was modified to acquire data for both the arterial input function (AIF) and the myocardium, using two different saturation-recovery time delays (TDs) and spatial resolutions, after a single saturation pulse. Five healthy subjects were scanned at 3T in three short-axis levels of the heart per heartbeat during passage of a high-dose bolus of contrast agent. The T(1)-weighted signal-time curve of the blood was converted to AIF using empirical conversion tables derived from phantom experiments. In all subjects the calculated AIF was consistently less distorted and higher for the short-TD protocol than for the long-TD protocol (peak concentration: 5.0 +/- 1.0 mM vs. 3.0 +/- 0.6 mM; P < 0.01). A combination of EPI, long TD, high-dose bolus of contrast agent, and 3T imaging yielded relatively strong peak enhancement in the myocardium (CNR = 11.9 +/- 3.3). Our dual-imaging approach at 3T seems promising for acquiring both a relatively accurate AIF and a high CNR of myocardial wall enhancement in multiple slices per heartbeat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.