Abstract

Multislice computed tomography (CT) angiography has been increasingly used in the detection and diagnosis of coronary artery disease because of its rapid technical evolution from the early generation of 4-slice CT scanners to the latest models such as 64-slice, 256-slice and 320-slice CT scanners. Technical developments of multislice CT imaging enable improved diagnostic value in the detection of coronary artery disease, and this indicates that multislice CT can be used as a reliable less-invasive alternative to invasive coronary angiography in selected patients. In addition, multislice CT angiography has played a significant role in the prediction of disease progression and cardiac events. Despite promising results reported in the literature, multislice CT has the disadvantage of having a high radiation dose which could contribute to the radiation-induced malignancy. A variety of strategies have been currently undertaken to reduce the radiation dose associated with multislice CT coronary angiography while in the meantime acquiring diagnostic images. In this article, the author will review the technical developments, radiation dose associated with multislice CT coronary angiography, and strategies to reduce radiation dose. The diagnostic and prognostic value of multislice CT angiography in coronary artery disease is briefly discussed, and future directions of multislice CT angiography in the diagnosis of coronary artery disease will also be highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.