Abstract

Background aimsThe Multisite Evaluation Study on Analytical Methods for Non-Clinical Safety Assessment of Human-Derived Regenerative Medical Products (MEASURE) is a Japanese experimental public–private partnership initiative, which aims to standardize methodology for tumorigenicity evaluation of human pluripotent stem cell (hPSC)-derived cell therapy products (CTPs). Undifferentiated hPSCs possess tumorigenic potential, and thus residual undifferentiated hPSCs are one of the major hazards for the risk of tumor formation from hPSC-derived CTPs. Among currently available assays, a highly efficient culture (HEC) assay is reported to be one of the most sensitive for the detection of residual undifferentiated hPSCs. MethodsMEASURE first validated the detection sensitivity of HEC assay and then investigated the feasibility of magnetic-activated cell sorting (MACS) to improve sensitivity. ResultsThe multisite experiments confirmed that the lower limit of detection under various conditions to which the human induced pluripotent stem cell lines and culture medium/substrate were subjected was 0.001%. In addition, MACS concentrated cells expressing undifferentiated cell markers and consequently achieved a detection sensitivity of 0.00002%. ConclusionsThese results indicate that HEC assay is highly sensitive and robust and that the application of MACS on this assay is a promising tool for further mitigation of the potential tumorigenicity risk of hPSC-derived CTPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.