Abstract

Understanding of the neural bases for complex behaviors in Hymenoptera insect species has been limited by a lack of tools that allow measuring neuronal activity simultaneously in different brain regions. Here, we developed the first pan-neuronal genetic driver in a Hymenopteran model organism, the honey bee, and expressed the calcium indicator GCaMP6f under the control of the honey bee synapsin promoter. We show that GCaMP6f is widely expressed in the honey bee brain, allowing to record neural activity from multiple brain regions. To assess the power of this tool, we focused on the olfactory system, recording simultaneous responses from the antennal lobe, and from the more poorly investigated lateral horn (LH) and mushroom body (MB) calyces. Neural responses to 16 distinct odorants demonstrate that odorant quality (chemical structure) and quantity are faithfully encoded in the honey bee antennal lobe. In contrast, odor coding in the LH departs from this simple physico-chemical coding, supporting the role of this structure in coding the biological value of odorants. We further demonstrate robust neural responses to several bee pheromone odorants, key drivers of social behavior, in the LH. Combined, these brain recordings represent the first use of a neurogenetic tool for recording large-scale neural activity in a eusocial insect and will be of utility in assessing the neural underpinnings of olfactory and other sensory modalities and of social behaviors and cognitive abilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.