Abstract
Modeling alternative irrigation strategies can be a cost-effective and time-saving approach to field-based experiments. However, the efficacy of irrigation scheduling algorithms should be verified using field data from multiple locations. In this study, an auto-irrigation algorithm recently developed for Soil and Water Assessment Tool (SWAT) was further evaluated using irrigation data for corn (Zea mays L.) grown at six research sites across the Southern Great Plains. Simulated monthly irrigation, based on the management allowed depletion (MAD) of plant available soil water, was compared to measured data for irrigation applied in accordance with crop water requirement guidelines outlined by the Food and Agriculture Organization Irrigation and Drainage Paper 56. Overall, results indicated the MAD algorithm simulated monthly field-based irrigation amounts well (Nash-Sutcliffe efficiency; NSE > 0.56). Comparisons revealed the MAD algorithm outperformed the plant water demand and soil water content approaches in SWAT, which tended to underestimate and overestimate irrigations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.