Abstract

Developing broadband cyan-emitting phosphors is an essential issue to achieve high-quality full-spectrum phosphor-converted white light-emitting diodes. Multisite cation regulation to modify the photoluminescence spectrum is a valid way to achieve broadband emission for phosphors. The Ba9Lu2Si6O24 lattice with various cation sites for activator ions is a preferred host for broadband emitting phosphors. The preferential crystallographic sites of Eu2+ in the Ba9Lu2Si6O24 lattice are identified based on the crystal field theory, crystal structure, and bond indices (such as NAC and SBOs) of the cations. Sr substitution in Ba9Lu2Si6O24/Eu2+ phosphor affects the location of Eu2+ activator ions, which is investigated via the first-principles density functional theory calculations, Rietveld refinement, and luminescence decay curves, and results in the modification of luminescence properties and thermal stability. The Sr-substituted (Ba0.8Sr0.2)9Lu2Si6O24/Eu2+ sample exhibits a broadband emission spectrum peaked at 471 and 518 nm with a large full width half maximum of 139 nm, covering blue-cyan-green regions, which can be an excellent candidate as broadband cyan-emitting phosphors for high-quality full-spectrum wLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call