Abstract

Low-cost and real-time formaldehyde (HCHO) monitoring is of great importance due to its volatility, extreme toxicity, and ready accessibility. In this work, a low-cost and integrated microelectromechanical system (MEMS) HCHO sensor is developed based on SnO2 multishell hollow microspheres loaded with a bimetallic PdPt (PdPt/SnO2-M) sensitizer. The MEMS sensor exhibits a high sensitivity to HCHO ((Ra/Rg - 1) % = 83.7 @ 1 ppm), ultralow detection limit of 50 ppb, and ultrashort response/recovery time (5.0/7.0 s @ 1 ppm). These excellent HCHO sensing properties are attributed to its unique multishell hollow structure with a large and accessible surface, abundant interfaces, suitable mesoporous structure, and synergistic catalytic effects of bimetal PdPt. The well-defined multishell hollow structure also shows fascinating capacities as good hosts for noble metal loading. Therefore, PdPt bimetallic nanoparticles can be employed to construct a synergistic sensitizer with a high content and good dispersity on this multishell hollow structure, further exhibiting a reduced working temperature and ultrasensitive detection of HCHO. This PdPt/SnO2-M-based MEMS sensor presents a unique and highly sensitive means to detect HCHO, establishing its great promise for potential application in environmental monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.