Abstract

Objectives. The primary objective of this study was to investigate the effects of five consecutive, daily 20-minute sessions of M1 a-tDCS on motor learning in healthy, cognitively intact, aging adults. Design. A total of 23 participants (51 to 69 years old) performed five consecutive, daily 20-minute sessions of a serial reaction time task (SRT task) concomitant with either anodal (n = 12) or sham (n = 11) M1 a-tDCS. Results. We found a significant group × training sessions interaction, indicating that whereas aging adults in the sham group exhibited little-to-no sequence-specific learning improvements beyond the first day of training, reproducible improvements in the ability to learn new motor sequences over 5 consecutive sessions were the net result in age-equivalent participants from the M1 a-tDCS group. A significant main effect of group on sequence-specific learning revealed greater motor learning for the M1 a-tDCS group when the five learning sessions were averaged. Conclusion. These findings raise into prominence the utility of multisession anodal TDCS protocols in combination with motor training to help prevent/alleviate age-associated motor function decline.

Highlights

  • Transcranial direct current stimulation is a noninvasive technique of cortical brain neuromodulation, which uses constant, low intensity direct current delivered to the brain area of interest via electrodes on the scalp [1, 2]

  • Relative to sham Transcranial direct current stimulation (tDCS) stimulation, a single-session anodal tDCS (a-tDCS) stimulation of M1 resulted in increased SRT task performance, whereas stimulation of the premotor and prefrontal cortices had no effect. These findings suggest that a-tDCS concomitant to SRT task performance accentuates implicit motor learning effects [19]

  • The current findings reveal that, relative to sham tDCS, the application of five consecutive, daily 20-minute sessions of M1 a-tDCS concomitant with the execution of a SRT task significantly enhances implicit motor learning in the aging brain

Read more

Summary

Introduction

Transcranial direct current stimulation (tDCS) is a noninvasive technique of cortical brain neuromodulation, which uses constant, low intensity direct current delivered to the brain area of interest via electrodes on the scalp [1, 2]. The application of such current influences transmembrane neuronal potentials and covertly modifies the level of neuronal excitability via activation of cerebral plasticity mechanisms [2,3,4,5]. The utility of a-tDCS is best validated in studies aiming to modulate primary motor cortex (M1) excitability and associated motor functions. M1 is highly involved in motor execution and learning as well as in procedural memory formation including the consolidation of motor skills [7, 12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call