Abstract

This paper considers a multiserver retrial queue with setup time which is motivated from application in data centers with the ON-OFF policy, where an idle server is immediately turned off. The ON-OFF policy is designed to save energy consumption of idle servers because an idle server still consumes about 60% of its peak consumption processing jobs. Upon arrival, a job is allocated to one of available off-servers and that server is started up. Otherwise, if all the servers are not available upon arrival, the job is blocked and retries in a random time. A server needs some setup time during which the server cannot process a job but consumes energy. We formulate this model using a three-dimensional continuous-time Markov chain obtaining the stability condition via Foster-Lyapunov criteria. Interestingly, the stability condition is different from that of the corresponding non-retrial queue. Furthermore, exploiting the special structure of the Markov chain together with a heuristic technique, we develop an efficient algorithm for computing the stationary distribution. Numerical results reveal that under the ON-OFF policy, allowing retrials is more power-saving than buffering jobs. Furthermore, we obtain a new insight that if the setup time is relatively long, setting an appropriate retrial time could reduce both power consumption and the mean response time of jobs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call