Abstract

Unexplained falls in older adults are thought to arise from subtle deficits in multiple components of the postural control system, including peripheral sensory loss and central sensory processing. One commonly proposed central sensory processing deficit is a decline in the adaptive use of changing or conflicting sensory inputs for estimating body dynamics, i.e., multisensory reweighting. We examined the assumption of impaired multisensory reweighting in healthy and fall-prone older adults using quantitative methods that have previously demonstrated reweighting in young adults. Standing subjects were exposed to simultaneous medio-lateral oscillatory visual and fingertip touch inputs at varying relative amplitudes. No group differences in overall levels of vision and touch gain were found. Both healthy and fall-prone older adults demonstrated the same pattern of adaptive gain change as healthy young adults. Like the young adults, both elderly groups displayed clear evidence of intra- and inter-sensory reweighting to both vision and touch motion stimuli. These data suggest that, for small amplitude vision and touch stimuli, the central sensory reweighting adaptation process remains intact in healthy and fall-prone older adults with sufficiently intact peripheral sensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call