Abstract

An effective damage diagnosis and prognostic management method can considerably reduce operation and maintenance costs of floating wind turbines. In this research, an intelligent damage diagnosis framework, named “MS-ACNN”, has been developed using a multi-scale deep convolution neural network model fused with an attention mechanism. The framework is used to detect, localize, and quantify existing and potential damages on multibody floating wind turbine tendons. The MS-ACNN framework is fitted with two multi-scale extractors, designed to capture multi-scale information from raw wind turbine response signals measured using multi-sensor. The attention mechanism uses weight ratios of extracted damage feature to enhance the MS-ACNN's capability in offering a better generalization in damage diagnosis. The framework's performance is examined under normal and noisy environments and with a diagnosis accuracy of 80%, which is higher than those obtained using most generic industrial grade diagnostic tools (MS–CNN–I, MSCNN-II, CNN, CNN-LSTM and CNN-BiLSTM) by at least 10%. The framework is also fitted with a Majority Weighted Voting rule to reduce false alarms and ensure optimum performance of the multi-sensor during collaborative diagnosis. Further examination shows that the inclusion of a voting rule increases the diagnostic performance's F1 index from 90% for single sensor and 84% for multi-sensor results to 94%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.