Abstract
Dorsal cochlear nucleus fusiform cells receive spectrally relevant auditory input for sound localization. Fusiform cells integrate auditory with other multisensory inputs. Here we elucidate how somatosensory and vestibular stimulation modify the fusiform cell spatial code through activation of an inhibitory interneuron: the ventral cochlear nucleus D-stellate cell. These results suggests that multisensory cues interact early in an ascending sensory pathway to serve an essential function. In the cochlear nucleus (CN), the first central site for coding sound location, numerous multisensory projections and their modulatory effects have been reported. However, multisensory influences on sound location processing in the CN remain unknown. The principal output neurons of the dorsal CN, fusiform cells, encode spatial information through frequency-selective responses to direction-dependent spectral features. Here, single-unit recordings from the guinea pig CN revealed transient alterations by somatosensory and vestibular stimulation in fusiform cell spatial coding. Changes in fusiform cell spectral sensitivity correlated with multisensory modulation of ventral CN D-stellate cell responses, which provide direct, wideband inhibition to fusiform cells. These results suggest that multisensory inputs contribute to spatial coding in DCN fusiform cells via an inhibitory interneuron, the D-stellate cell. This early multisensory integration circuit likely confers important consequences on perceptual organization downstream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.