Abstract

This paper describes the development of a Bayesian framework for multiple graph matching. The study is motivated by the plethora of multi-sensor fusion problems which can be abstracted as multiple graph matching tasks. The study uses as its starting point the Bayesian consistency measure recently developed by Wilson and Hancock. Hitherto, the consistency measure has been used exclusively in the matching of graph-pairs. In the multiple graph matching study reported in this paper, we use the Bayesian framework to construct an inference matrix which can be used to gauge the mutual consistency of multiple graph-matches. The multiple graph-matching process is realised as an iterative discrete relaxation process which aims to maximise the elements of the inference matrix. We experiment with our multiple graph matching process using an application vehicle furnished by the matching of aerial imagery. Here we are concerned with the simultaneous fusion of optical, infra-red and synthetic aperture radar images in the presence of digital map data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.