Abstract
The performance of autonomous agents in both commercial and consumer applications increases along with their situational awareness. Tasks such as obstacle avoidance, agent to agent interaction, and path planning are directly dependent upon their ability to convert sensor readings into scene understanding. Central to this is the ability to detect and recognize objects. Many object detection methodologies operate on a single modality such as vision or LiDAR. Camera-based object detection models benefit from an abundance of feature-rich information for classifying different types of objects. LiDAR-based object detection models use sparse point clouds, where each point contains accurate 3D position of object surfaces. Camera-based methods lack accurate object to lens distance measurements, while LiDAR-based methods lack dense feature-rich details. By utilizing information from both camera and LiDAR sensors, advanced object detection and identification is possible. In this work, we introduce a deep learning framework for fusing these modalities and produce a robust real-time 3D bounding box object detection network. We demonstrate qualitative and quantitative analysis of the proposed fusion model on the popular KITTI dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.