Abstract
Target detection using multi fusion data is one of the common techniques used in military as well as defence units. The usage of a wide variety of sensors is now possible due to modern data fusion technology. The major problem is the existing multi-sensor fusion technique is loss of data and delay is message transfer. To overcome the existing problems, proposed work includes optimization, machine learning, and soft computing techniques. Multi Sensor Data Fusion (MSDF) is becoming an increasingly significant field of study and is being explored by a broad range of individuals. Data defects, outliers, misleading data, conflicting data, and data association are some data fusion concerns. In addition to the statistical advantages of more independent observations, the precision of an observation may be improved by using a variety of different types of sensors. Target tracking has earned a lot of attention in recent years in the realm of surveillance and measurement systems, particularly those in which the state of a target is approximated based on measurements. Academics as well as implementers in the fields of radar, sonar, and satellite surveillance are interested in the bearings-only tracking (BOT) problem. The BOT is the sole option available in many surveillance systems, such as those found aboard submarines. Significant difficulties arise because of the constrained observability of target states based only on bearing measurements. The work that is suggested tackles the limitations of EKF and its derivatives in controlling MSDF within the context of BOT. Specifically, the study identifies divergence as a primary challenge and works to devise solutions for it. It is recommended that two key methods of fusion, data level and feature level (or state level), be investigated in depth. This is in recognition of the fact that the MSDF may increase observability, thereby reducing the tendency of the tracking algorithm to diverge and realizing a better estimate of the states. The Information Filter, which is a casting of the Kalman Filter, and its expansions are employed via extensive simulation to lessen the influence of initial assumptions on the convergence of MSDF tracking algorithms. This is accomplished by using the Kalman Filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.