Abstract

This paper presents several multiscattering algorithms on the Cube-Connected Cycles (CCC). We first implement a network-independent greedy algorithm. Then we propose two specialized algorithms for multiscattering on the CCC: the first approach uses only one hypercube link of each cycle, but the second approach uses all hypercube links at each phase. The theoretical formulas given in this paper show that multiscattering on the CCC with N=H *2 S (H≥S) processors can be performed in time [( H+1) S+[ H/2]]β+[( H+1) SH+[ H/2]([ H/2]+1)] 2 S−1 Lτ or [2 S+[ S/2]]β+[( S 2-1)2 S+[ S/2]([ S/2]+1)2 S−1 +1] Lτ, where L is the message length, β is the startup and τ is the inverse of the bandwidth of communication. The difference between the complexity of the two approaches is due to the number of hypercube links used at each phase. We carry out experiments with the greedy algorithm on the ring and the exchange-perfect shuffle, and we compare the two multiscattering algorithms on the CCC with the greedy algorithm and the non-oriented ring algorithm on a transputer-based machine with 32 processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.