Abstract

Dark matter may be discovered through its capture in stars and subsequent annihilation. It is usually assumed that dark matter is captured after a single scattering event in the star, however this assumption breaks down for heavy dark matter, which requires multiple collisions with the star to lose enough kinetic energy to become captured. We analytically compute how multiple scatters alter the capture rate of dark matter and identify the parameter space where the affect is largest. Using these results, we then show how multiscatter capture of dark matter on compact stars can be used to probe heavy ($m_X >$ TeV) dark matter with remarkably small dark matter-nucleon scattering cross-sections. As one example, it is demonstrated how measuring the temperature of old neutron stars in the Milky Way's center provides sensitivity to high mass dark matter with dark matter-nucleon scattering cross-sections smaller than the xenon direct detection neutrino floor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call