Abstract

We evaluate the possibility that the 1/f fluctuations observed in many biological time series result simply from the fact that biological processes have many inputs with differing time scales. We present a stochastic model whose output is the summation of multiple random inputs (i.e., different regulatory mechanisms). We derive the conditions under which the model reproduces the complex fluctuations and 1/f scaling observed in biological systems. Simulations demonstrate that if model parameters are unconstrained, the likelihood of generating 1/f noise is quite small. Thus, while the model can be used to generate 1/${\mathit{f}}^{\mathrm{\ensuremath{\beta}}}$ noise with various scaling exponents, it is unlikely that the 1/f behavior observed in many biological systems is due only to the fact that these systems are regulated by many different inputs acting on different time scales. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call