Abstract

A filter bank design based on orthonormal wavelets and equipped with a multiscale Wiener filter is proposed in this paper for signal restoration of 1/f family of fractal signals which are distorted by the transmission channel and corrupted by external noise. First, the fractal signal transmission process is transformed via the analysis filter bank into multiscale convolution subsystems in time-scale domain based on orthonormal wavelets. Some nonstationary properties, e.g., self-similarity, long-term dependency of fractal signals are attenuated in each subband by wavelet multiresolution decomposition so that the Wiener filter bank can be applied to estimate the multiscale input signals. Then the estimated multiscale input signals are synthesized to obtain the estimated input signal. Some simulation examples are given for testing the performance of the proposed algorithm. With this multiscale analysis/synthesis design via the technique of the wavelet filter bank, the multiscale Wiener filter can be applied to treat the signal restoration problem for nonstationary 1/f fractal signals. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.