Abstract

Computational fluid dynamics (CFD) modeling of blood flow from image-based patient specific models can provide useful physiologic information for guiding clinical decision making. A novel method for the generation of image-based, 3-D, multiscale vascular surface models for CFD is presented. The method generates multiscale surfaces based on either a linear triangulated or a globally smooth nonuniform rational B-spline (NURB) representation. A robust local curvature analysis is combined with a novel global feature analysis to set mesh element size. The method is particularly useful for CFD modeling of complex vascular geometries that have a wide range of vasculature size scales, in conditions where 1) initial surface mesh density is an important consideration for balancing surface accuracy with manageable size volumetric meshes, 2) adaptive mesh refinement based on flow features makes an underlying explicit smooth surface representation desirable, and 3) semi-automated detection and trimming of a large number of inlet and outlet vessels expedites model construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call