Abstract

Quantitative unique continuation principles for multiscale structures are an important ingredient in a number applications, e.g. random Schr\"odinger operators and control theory. We review recent results and announce new ones regarding quantitative unique continuation principles for partial differential equations with an underlying multiscale structure. They concern Schr\"odinger and second order elliptic operators. An important feature is that the estimates are scale free and with quantitative dependence on parameters. These unique continuation principles apply to functions satisfying certain `rigidity' conditions, namely that they are solutions of the corresponding elliptic equations, or projections on spectral subspaces. Carleman estimates play an important role in the proofs of these results. We also present an explicit Carleman estimate for second order elliptic operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.