Abstract
The worldwide energy demand in electric vehicles and the increasing global temperature have called for development of high-energy and long-life lithium-ion batteries (LIBs) with improved high-temperature operational resiliency. However, current attention has been mostly focused on cycling aging at elevated temperature, leaving considerable gaps of knowledge in the failure mechanism, and practical control of abusive calendar aging and thermal runaway that are highly related to the eventual operational lifetime and safety performance of LIBs. Herein, using a combination of various in situ synchrotron X-ray and electron microscopy techniques, a multiscale understanding of surface structure effects involved in regulating the high-temperature operational tolerance of polycrystalline Ni-rich layered cathodes is reported. The results collectively show that an ultraconformal poly(3,4-ethylenedioxythiophene) coating can effectively prevent a LiNi0.8 Co0.1 Mn0.1 O2 cathode from undergoing undesired phase transformation and transition metal dissolution on the surface, atomic displacement, and dislocations within primary particles, intergranular cracking along the grain boundaries within secondary particles, and intensive bulk oxygen release during high state-of-charge and high-temperature aging. The present work highlights the essential role of surface structure controls in overcoming the multiscale degradation pathways of high-energy battery materials at extreme temperature.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.