Abstract

AbstractAmong various commercially available energy storage devices, lithium‐ion batteries (LIBs) stand out as the most compact and rapidly growing technology. This multicomponent system operates on coupled dynamics to reversibly store and release electricity. With the hierarchical electrode architectures inside LIBs, versatile functionality can be realized by design, while considerable difficulties remain to be solved to fully exploit the capability of each constituent. With the rapid electrification of the transportation sector and an urgent need to overhaul electric grids in the context of renewable energy penetration, demands for concomitant high energy and high power batteries are continuously increasing. Although building an ideal battery requires effort from multiple scientific and engineering aspects, it is imperative to gain insight into multiscale transport behaviors arising in both spatial and temporal dimensions, and enable their harmonic integration inside the whole battery system. In this progress report, recent research efforts on characterizing and understanding transport kinetics in LIBs are reviewed covering a broad range of electrode materials and length scales. To demonstrate the crucial role of such information in revolutionary electrode design, examples of innovative high energy/power electrodes are provided with their unique hierarchical porous architectures highlighted. To conclude, perspectives on further approaches toward advanced thick electrode designs with fast kinetics and tailored properties are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.