Abstract

We are concerned with optimization of macroscale elastic structures that are designed utilizing spatially varying microscale metamaterials. The macroscale optimization is accomplished using gradient-based nonlinear topological optimization. But instead of using density as the optimization decision variable, the decision variables are the multiple parameters that define the local microscale metamaterial. This is accomplished using single layer feedforward Gaussian basis function networks as a surrogate models of the elastic response of the microscale metamaterial. The surrogate models are trained using highly resolved continuum finite element simulations of the microscale metamaterials and hence are significantly more accurate than analytical models e.g. classical beam theory. Because the derivative of the surrogate model is important for sensitivity analysis of the macroscale topology optimization, a neural network training procedure based on the Sobolev norm is described. Since the SIMP method is not appropriate for spatially varying lattices, an alternative method is developed to enable creation of void regions. The efficacy of this approach is demonstrated via several examples in which the optimal graded metamaterial outperforms a traditional solid structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.