Abstract

Abstract A study of the micromechanical behavior to predict the overall response of short fiber-reinforced composites under cyclic mechanical and thermal loading is presented. The instantaneous average over a “representative volume” of the material is considered. The influence of the short fiber’s aspect ratio, volume fraction, and spatial orientation has been investigated. The linear combined hardening model is used to describe the cyclic hardening effects in the case of metal matrix. A numerical procedure is used to predict the response of composites under mechanical and thermal conditions. The results of the numerical procedure have been compared to the results of three different models and to published experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.