Abstract

In this paper, we investigate the multiscale support vector regression (SVR) method for approximation of functions in Sobolev spaces on bounded domains. The Vapnik ϵ-intensive loss function, which has been developed well in learning theory, is introduced to replace the standard l2 loss function in multiscale least squares methods. Convergence analysis is presented to verify the validity of the multiscale SVR method with scaled versions of compactly supported radial basis functions. Error estimates on noisy observation data are also derived to show the robustness of our proposed algorithm. Numerical simulations support the theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.