Abstract

The self-organization in a multi-ion plasma composed of electrons and two species of positively charged ions is investigated. It is shown that when canonical vorticities and velocities of all the plasma fluids are aligned, the magnetic field self-organizes to Quadruple Beltrami state (superposition of four Beltrami fields). The self-organized magnetic and velocity fields strongly depend on the relative strengths of the generalized vorticities, flows, inertia and densities of the plasma species. Thus, it is possible to generate a wide variety of multiscale magnetic field and flow structures. It is also shown that relaxed magnetic fields and velocities can vary on vastly different length scales simultaneously and are coupled together through singular perturbation generated by Hall effect. In this multi Beltrami self-organized states, then, the dynamo mechanism emerges naturally. The scale separation also suggests the heating of the plasma through a dissipative process. The work could be useful to study the dynamics and morphology of the multiscale magnetic field configurations in laboratory and astrophysical plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.