Abstract

HypothesisHydroxypropyl methylcellulose phthalate (HPMCP) is an enteric polymer that has been employed in drug delivery systems to delay the release of the encapsulated active pharmaceutical ingredients through its pH-responsive solubility change. This has been recently demonstrated as an effective means for delaying the drug release from gelatin/HPMCP hydrogels at gastric pH values. However, structural characteristics of HPMCP agglomeration in gelatin/HPMCP hydrogels is not well understood thus limiting further tailoring of their material properties. ExperimentsWe investigated the multiscale structure of a gelatin/HPMCP hydrogel (1:1 by weight) at 37 °C, above the upper critical solution transition temperature of gelatin, between pH 2 and 6 using small-angle X-ray scattering and contrast-variation small-angle neutron scattering to understand the pH-responsive structure of HPMCP and the cross-correlation between gelatin and HPMCP. FindingsAgglomeration of HPMCP between pH 2 and 4 was evidenced by the formation of mass fractal structures, with a fractal dimension of ca. 1.7, comprising primary particles with a radius of gyration of ca. 90 Å. Blending with gelatin influenced the fractal structure of HPMCP and primary particle size. Gelatin and HPMCP exhibited negative cross-correlation in all probed length scales and pH values, which was attributed to volume-exclusion interaction in a double-network-like solution architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call