Abstract

This paper focuses on a multiscale methodology to model and analyze large high-rise buildings subject to disastrous dynamic excitations. Starting from the material randomness and the nonlinear behavior of concrete, a mesoscopic stochastic damage model (SDM) is recommended in which the fracture strain of concrete at the microlevel is modeled as a Gaussian random field. By integrating the SDM and the refined structural elements into the finite element analysis, the structural dynamic responses can be comprehensively investigated using the explicit integration algorithm to solve the dynamic equations. To represent the probability information of structural responses, the probability density evolution method (PDEM) is employed. Also, the randomness propagation across different levels can be readily addressed via PDEM. The absorbing boundary condition corresponding to the failure criterion of structures is introduced to assess the dynamic reliability. As a case study, the stochastic dynamic analysis and the reliability assessment are illustratively carried out in terms of a prototype reinforced concrete structure. The simulated results show that the randomness of concrete materials plays a critical role in the stochastic response and dynamic reliability of reinforced concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.