Abstract
In this study, based on daily precipitation records during 1958–2017 from 28 meteorological stations in the Beijing-Tianjin-Hebei (BTH) region, the spatio-temporal variations in precipitation extremes defined by twelve indices are analyzed by the methods of linear regression, Mann-Kendall test and continuous wavelet transform. The results showed that the spatial patterns of all the indices except for consecutive dry days (CDD) and consecutive wet days (CWD) were similar to that of annual total precipitation with the high values in the east and the low value in the west. Regionally averaged precipitation extremes were characterized by decreasing trends, of which five indices (i.e., very heavy precipitation days (R50), very wet precipitation (R95p), extreme wet precipitation (R99p), max one-day precipitation (R × 1day), and max five-day precipitation (R × 5day)) exhibited significantly decreasing trends at 5% level. From monthly and seasonal scale, almost all of the highest values in R × 1day and R × 5day occurred in summer, especially in July and August due to the impacts of East Asian monsoon climate on inter-annual uneven distribution of precipitation. The significant decreasing trends in annual R×1day and R×5day were mainly caused by the significant descend in summer. Besides, the possible associations between precipitation extremes and large-scale climate anomalies (e.g., ENSO (El Niño Southern Oscillation), NAO (North Atlantic Oscillation), IOD (Indian Ocean Dipole), and PDO (Pacific Decadal Oscillation)) were also investigated using the correlation analysis. The results showed that the precipitation extremes were significantly influenced by ENSO with one-year ahead, and the converse correlations between the precipitation extremes and climate indices with one-year ahead and 0-year ahead were observed. Moreover, all the indices show significant two- to four-year periodic oscillation during the entire period of 1958–2017, and most of indices show significant four- to eight-year periodic oscillation during certain periods. The influences of climate anomalies on precipitation extremes were composed by different periodic components, with most of higher correlations occurring in low-frequency components.
Highlights
With the global hydrological cycle accelerating subsequently in the background of climate warming [1], extreme climate events have become more frequent [2], which has a significant impact on human society and even causes serious losses to people’s lives and property [3,4,5]
We found that most of extreme precipitation indices in the BTH region were significantly influenced by ENSO with one-year ahead (NINO3.4-1)
For most of precipitation extremes except for consecutive dry days (CDD) and consecutive wet days (CWD), the highest values located in the eastern BTH region, while the lowest values occurred in the western part (Figure 2), which was mainly influenced by the terrain (Figure 1a) with the high values in the northwest and the low in the southeast of BTH
Summary
With the global hydrological cycle accelerating subsequently in the background of climate warming [1], extreme climate events have become more frequent [2], which has a significant impact on human society and even causes serious losses to people’s lives and property [3,4,5]. Change Detection and Indices (ETCCDI) has defined a set of climate indices to provide the widespread overview of daily temperature and precipitation. These extreme indices have been widely used all around the world for analyzing the changes in extreme in the past as well as in the future [7,8,9]. Given the potentially significant social, economic, and ecological impacts of extreme precipitation events, comprehensive and up-to-date assessments of precipitation extremes at a local scale are beneficial for water resources management, flood control, and prevention under a changing environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.