Abstract
This work presents novel multiscale spatial data analytics using Ripley's K-function, as a measure of spatial interaction, to study one-dimensional arrangement of fractures. Fracture spatial arrangements are classified into clustered, anticlustered, or indistinguishable from random by testing statistical significance of the calculated Ripley's K-function. Characterizations of fracture arrangements are performed as a function of length scale and position. Analysis of the K-function along the study interval identifies where fracture clustering and anticlustering occur. A simulation technique is also introduced here to statistically reconstruct spatial arrangements and to generate fracture realizations that are spatially similar to the fractures observed in the field. With this simulation technique, one can also fill spatial gaps in fracture measurements where data are absent, unreliable, or unused. Synthetic as well as field-measured 1D fracture datasets are used for testing and demonstration. Methods introduced in this work can be readily applied to fracture datasets observed in outcrops, borehole image logs, and cores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.