Abstract

In this paper, thermoelectric properties of bulk PbTe are calculated using first principles calculations and molecular dynamics simulations. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is first employed to calculate the PbTe band structure. The transport coefficients (Seebeck coefficient, electrical conductivity, and electron thermal conductivity) are then computed using Boltzmann transport equation (BTE) under the constant relaxation time approximation. Interatomic pair potentials in the Buckingham form are also derived using ab initio effective charges and total energy data. The effective interatomic pair potentials give excellent results on equilibrium lattice parameters and elastic constants for PbTe. The lattice thermal conductivity of PbTe is then calculated using molecular dynamics simulations with the Green-Kubo method. In the end, the figure of merit of PbTe is computed revealing the thermoelectric capability of this material, and the multiscale simulation approach is shown to have the potential to identify novel thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call