Abstract

Iron oxide magnetic nanoparticles (NPs) are excellent systems in catalysis and in nanomedicine, where they are mostly immersed in aqueous media. Even though the NP solvation by water is expected to play an active role, the detailed structural insight at the nanostructure oxide/water interface is still missing. Here, based on our previous efforts to obtain accurate models of dehydrated Fe3O4 NPs and of their magnetic properties and through multiscale molecular dynamics simulations combining the density functional tight binding method and force field, we unravel the atomistic details of the short range (chemical) and long range (physical) interfacial effects when magnetite nanoparticles are immersed in water. The influence of the first hydration shell on the structural, electronic and magnetic properties of Fe3O4 NPs is revealed by high-level hybrid density functional calculations. Hydrated Fe3O4 NPs possess larger magnetic moment than dehydrated ones. This work bridges the large gap between experimental studies on solvated Fe3O4 NPs and theoretical investigations on flat Fe3O4 surfaces covered with water and paves the way for further study of Fe3O4 NPs in biological environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call