Abstract

We have successfully applied a multiscale simulation (MSS) method [Murashima, T.; Taniguchi, T. Europhys. Lett. 2011, 96, 18002] to flows of a monodispersed linear entangled polymer melt in a contraction–expansion channel. In our MSS method, a macroscopic model is coupled with a microscopic model through the velocity gradient tensor and the stress tensor. The smoothed particle hydrodynamics (SPH) method is employed as the macroscopic model, and a slip-link model is employed as the microscopic model. Two-dimensional flows in a 4:1:4 contraction–expansion channel are examined using our MSS method. From our MSSs, we have evaluated detailed microscopic information from the polymer chain dynamics, such as the local orientation of polymer chains, the average number of entanglements, and the number density of entanglements along a polymer chain. To further understand entanglements on a chain in a polymer melt under flows, we have developed a model equation that describes the time evolution of the number density ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.