Abstract

This work introduces a coupled thermo-chemo-mechanical framework for simulating the polymerisation process of composites, accounting for large strains. The framework encompasses the microscale, mesoscale and, macroscale. The microscale represents a step-growth polymerisation mechanism, which is modelled as a system of multiple growing spheres. These spheres are further decomposed into concentric layers of solid, resin, and curing agent material. At the mesoscale, the composite is divided into inclusions and the polymer matrix. The macroscale is considered as a homogeneous material. In order to describe the behaviour of the heterogeneous scales, mean-field homogenisation methods are employed. These methods have been developed before for linear elastic materials. However, considering finite deformations, a special treatment is necessary to accurately account for the effects of such deformations. Effective properties at all scales are obtained using the Mori–Tanaka, Voigt, Reuss, and Voigt–Reuss–Hill average mean-field homogenisation method. The results demonstrate how the different homogenisation methods influence the curing process and, consequently, the macroscopic response of the composite material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call