Abstract

We present a multiresolution simulation scheme for the solvent environment where four atomistic water molecules are mapped onto one coarse-grained bead. Soft restraining potentials are used to allow a resolution exchange of four water molecules into a single coarse-grained site. We first study the effect of adding restraining potentials in liquid water using full all-atom simulations. The usage of very soft restraining potentials to bundle four nearest neighbor water molecules does not disrupt the hydrogen bonding patterns in the liquid water. The structural properties of the first solvation shell around hydrophobic, hydrophilic, and ionic solutes are well preserved when soft restraining potentials are added. By modeling a bundle of four water molecules as a single molecule, a smooth transition and free exchange between coarse-grained and all-atom resolution is possible by using the adaptive resolution scheme (AdResS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.