Abstract

ABSTRACTIn this paper we describe a multi-scale approach to ion migration processes, which involves a bridging from the atomic scale to the macroscopic scale. To this end, the diffusion coefficient of a material i.e. a macroscopic physical quantity, will be appropriately determined from molecular dynamics simulations on the microscale. This way, performance predictions become possible prior to material synthesis. However, standard methods produce in general wrong results for ensemble setups which correspond to battery or capacitor applications.We introduce a novel method to derive correct values also for such problems. These values are then used in a macroscopic system of partial differential equation (Poisson-Nernst-Planck system) for the numerical simulation of ion migration in a battery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.