Abstract
Estimating and segmenting topography by fusing data acquired over multiple resolutions has been extensively studied over the years. The standard multiscale Kalman smoother estimator embedded with a single stochastic model parameterized using power-spectral matching methods has been found to give suboptimal performance in estimating nonstationary topographic variations. The modeling is based on the fact that topography and other geophysical phenomena exhibit a 1/f property. Although acceptable for data sets over large areas, this approximation is found to be poor for data sets over small areas. This letter employs multiple models regulated by a mixture-of-experts network to adaptively fuse the estimates. Alternate to power spectral methods, a fractal-based approach is used to segment data and parameterize the multiple models for better performance. Sensitivity and performance analyses are also performed on the parameters of the estimators, and ideal selection criteria are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.