Abstract

Synergies resulting from the combination of discontinuous reinforcing elements at two different size scales are examined in two polymer types — rubbery matrices comprising acrylonitrile-co-butadiene (NBR) elastomer and a high density polyethylene plastic. The latter is derived from a recycled post-consumer waste stream that is upgraded by the reinforcement to compensate for any degradation experienced during prior use or impurities introduced during recycling. The two reinforcements are wood pulp at the microscale and exfoliating layered silicate clays at the nanoscale. Appropriate compatibilizing agents are employed to allow wetting of the reinforcement with the polymer matrix, promote dispersion and provide a strong interface. In general, the microscale elements provide mechanical strengthening in tension, while the nanoscale reinforcements enhance stiffening and reduce failure propagation by tearing. The use of natural reinforcements and recycled feedstocks imparts environmental acceptability to such formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.