Abstract

We describe a framework for modeling stochastic phenomena at multiple scales and for their efficient estimation or reconstruction given partial and/or noisy measurements which may also be at several scales. In particular multiscale signal representations lead naturally to pyramidal or tree-like data structures in which each level in the tree corresponds to a particular scale of representation. A class of multiscale dynamic models evolving on dyadic trees is introduced. The main focus of this paper is on the description, analysis, and application of an extremely efficient optimal estimation algorithm for this class of models. This algorithm consists of a fine-to-coarse filtering sweep, followed by a coarse-to-fine smoothing step, corresponding to the dyadic tree generalization of Kalman filtering and Rauch-Tung-Striebel smoothing. The Kalman filtering sweep consists of the recursive application of three steps: a measurement update step, a fine-to-coarse prediction step, and a fusion step. We illustrate the use of our methodology for the fusion of multiresolution data and for the efficient solution of fractal regularizations of ill-posed signal and image processing problems encountered. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.