Abstract

We present and assess a multiscale recursion method to calculate electronic density via the Green's function. The method lies within the framework of finite temperature density functional theory and uses a real space approach. It provides a satisfactory description of the first Brillouin zone without invoking k points. Unlike methods that explicitly calculate eigenstates, the computational workload decreases with temperature. Tests are performed on a system representing a hydrogen plasma with a local pseudopotential. Calculations are distributed on real space grids with different spacings using scaling properties of the recursion. The computational workload increases linearly with the size of the system and can be productively dispatched on an arbitrarily large number of processors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call