Abstract

This paper introduces a new multiscale framework for estimating the tail probability of a queue fed by an arbitrary traffic process. Using traffic statistics at a small number of time scales, our analysis extends the theoretical concept of the critical time scale and provides practical approximations for the tail queue probability. These approximations are non-asymptotic; that is, they apply to any finite queue threshold. While our approach applies to any traffic process, it is particularly apt for long-range-dependent (LRD) traffic. For LRD fractional Brownian motion, we prove that a sparse exponential spacing of time scales yields optimal performance. Simulations with LRD traffic models and real Internet traces demonstrate the accuracy of the approach. Finally, simulations reveal that the marginals of traffic at multiple time scales have a strong influence on queueing that is not captured well by its global second-order correlation in non-Gaussian scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.