Abstract

We present in this article a two-timescale variant of Q-learning with linear function approximation. Both Q-values and policies are assumed to be parameterized with the policy parameter updated on a faster timescale as compared to the Q-value parameter. This timescale separation is seen to result in significantly improved numerical performance of the proposed algorithm over Q-learning. We show that the proposed algorithm converges almost surely to a closed connected internally chain transitive invariant set of an associated differential inclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.